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The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding
therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules
to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the
repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma,
osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal
lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have
demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated
in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors.
Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an
ongoing combined effort of orthopedic surgeons and of basic scientists.
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Introduction

Articular cartilage defects and meniscal lesions have a
reduced capacity for regeneration. The concept of using
gene transfer strategies for cartilage repair originates from
the idea of transferring genes encoding therapeutic factors
into the repair tissue, resulting in a temporarily and spa-
tially defined delivery of the therapeutic molecule. In this
review, we will focus on gene therapy approaches for the
repair of articular cartilage and meniscal fibrocartilage,
including articular cartilage defects resulting from acute
trauma, osteochondritis dissecans, osteonecrosis, and oste-
oarthritis. Possible applications for meniscal repair will be
described for meniscal lesions, meniscal sutures, and
meniscal transplantation. As a discussion of cartilage dam-
age resulting from rheumatoid arthritis is beyond the scope
of this review, we refer to the many reviews already pub-
lished on this subject.'”

Principles of Gene Therapy

Gene transfer is the introduction of foreign genes or gene
sequences into different types of cells. Gene therapy is the
treatment of diseases using gene transfer techniques. Gene
transfer via nonviral vectors is named transfection; gene
transfer using viral vectors is termed transduction. The
foreign genetic material enters the cell and is next trans-
ferred towards the nucleus, where it either integrates into

the host genome or remains extrachromosomal as an epi-
some that generally allows only for transient transgene
expression. For therapeutic applications, gene transfer into
a sufficiently high number of target cells is essential for the
secretion of relevant concentrations of the transgene prod-
uct. Current vectors available for use in gene therapy
include nonviral approaches (naked DNA, physical and
chemical methods) and various viral (adenoviral, HSV,
retroviral, lentiviral, rAAV) vehicles (Table 1).

Among the nonviral systems, chemical methods of com-
plexing DNA to various macromolecules include cationic
lipids and liposomes,'**? polymers,'* polyamines and poly-
ethylenimines,'*"> and nanoparticles,'® but also calcium
phosphate coprecipitates'’ are mainly used. Nonviral sys-
tems avoid the risk of acquiring replication competence
inherent to viral vectors, can be repeatedly administered,
have the capacity to carry large therapeutic genes, are rela-
tively easy to produce on a large scale, and do not elicit a
detectable immune response. Nevertheless, their efficacy is
often inferior to those of viral vectors. Moreover, the fact
that they stay as episomal forms in the target cells often
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Table I. Nonviral and Viral Gene Vectors Suitable for Gene Transfer to Cartilage Defects

Nonviral Systems

Viral Systems

Others
(Chemical,
Electrical, and
Mechanical
Methods)

Liposomes Adenovirus

Adeno-Associated
Virus (AAV)

Herpes Simplex

Retrovirus Virus (HSV)

Advantages Independent from cell cycle Very high efficiency
Noninfectious; repeatedly Independent from cell
applicable cycle
Low toxicity Approved for clinical

Large capacity

trials

Easy to manufacture

Shortcomings  Cell-specific efficiency Infectious with
Short-term transgene
expression response; single
application only

Cytotoxicity
Risk of replication
competence
Short-term transgene
expression
No

Integration in No

host genome

induction of immune

High efficiency High efficiency Very high efficiency

Prolonged transgene Independent Prolonged
expression from cell cycle transgene
Large capacity expression
Independent from
cell cycle
Noninfectious;
repeatedly
applicable
Insertional Short-term Difficult to
mutagenesis transgene manufacture
Dependent from cell expression
cycle Cytotoxicity
Risk of replication (first-
competence generation
Restricted host range HSV)
Yes No No

Note: Properties of nonviral and viral gene vectors currently in clinical and experimental use for gene therapy approaches to cartilage defects.

results in short-term transgene expression. To avoid low
gene transfer efficacy in vivo, nonviral gene transfer strate-
gies are often based on the transplantation of ex vivo—
modified cells to cartilage defects.

Viral vectors utilize natural entry pathways in human
cells. Adenoviral vectors have been among the most
employed gene vehicles for cartilage repair in the past.'®**
They allow for high transduction efficiencies and transgene
expression in a variety of cells, enabling direct approaches
in vivo. However, serious concerns about their clinical
safety were raised after the death of Jesse Gelsinger, a
patient included in a gene therapy trial employing adenovi-
ral vectors. Moreover, transgene expression via adenoviral
delivery is limited for about 1 to 2 weeks as the transgenes
remain episomal and due to the development of host
immune responses against transduction with most of the
constructs derived from these viruses.

An advantage of retroviruses is their ability to integrate
in the genome of the target, allowing for the replication and
maintenance of the transgene over extended periods of
time. Yet, this might lead to insertional mutagenesis, with
the potential for activating tumor genes. Also, retroviral
vectors do not transduce nondividing cells and have a
restricted host range. As for nonviral systems, ex vivo

approaches with selection of transduced cells are usually
required with retroviral vectors”?’ because they are pro-
duced only at relatively medium titers and do not exhibit
very high efficiencies. Instead, lentiviral vectors, a subclass
of retroviruses derived from the human immunodeficiency
virus (HIV), can integrate in the genome of nondividing
cells.”® Therefore, such vectors might be good alternatives
to the use of retroviruses, as they show also higher levels of
transduction in vivo and avoid the need for cell division.”*
Yet, there are common concerns associated with their appli-
cation, including the potential for insertional mutagenesis
and the psychological problem of introducing genetic mate-
rial carrying HIV sequences.

Herpes simplex virus (HSV)—derived vectors are large
vehicles that can deliver long transgenes to almost all
known cell types, including nondividing cells. Although
first-generation vectors induced high levels of cytoxicity,
recent work has demonstrated that second-generation HSV
were less deleterious, in particular for cartilage repair.’’
One problem remains the transient nature of transgene
expression mediated by this family of vectors.

In any case, the direct application of viral vectors raises
legitimate safety concerns, as potentially infectious agents
or sequences (especially lentiviral vectors) might be intro-
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duced per se in the body. This is of particular importance
for the treatment of cartilage and meniscal lesions that are
not life-threatening disorders. In this regard, adeno-associ-
ated viral vectors (AAV), which are based on the nonpatho-
genic, replication-defective human parvovirus AAV,*
might prove more adequate in direct gene therapy settings.
Vectors based on AAV (rAAV) are produced by complete
removal of the viral gene coding sequences, making them
less immunogenic than adenoviral vectors and less toxic
than HSV. Also, the latter vectors generally mediate only
short-term expression of the transgenes they carry, whereas
rAAV can be transcribed for months to years due to the
stabilization of the episomal transgene cassettes by con-
catemer formation.**® Cell division and integration are not
required for expression of the foreign material delivered, in
marked contrast with retroviral vectors.’’ Redosing of vec-
tors is practicable with rAAV, based on the manipulation of
various available serotypes of the virus. For these reasons,
rAAV became a preferred gene transfer method for experi-
mental settings in vivo and for clinical applications.**~***

The greatest obstacle to develop efficient gene transfer
protocols targeting sites of articular cartilage and meniscal
fibrocartilage damage so far has been the restrained acces-
sibility of the lesions to a treatment. Therefore, the follow-
ing experimental approaches are currently employed to
transfer genes to sites of interest in vivo (Fig. 1):

1. intra-articular injection of the therapeutic formula-
tion, and

2. administration of the therapeutic formulation to
the defect via arthrotomy:

2.1. direct application of a gene vector to the repair tissue,

2.2. application of biomaterials carrying a gene vector,
and

2.3. matrix-supported application of ex vivo genetically

modified cells.

The target cells in which genes may be transferred
include the following:

1. progenitor cells (e.g., resulting from marrow-stim-
ulating techniques or transplanted cells),

2. isolated articular chondrocytes or meniscal fibro-
chondrocytes that are transplanted into the defect,
and

3. cells of the tissues adjacent to the defect:

3.1. articular cartilage: articular chondrocytes from the
adjacent cartilage, osteoblasts, and osteocytes from
the subchondral bone; and

3.2.meniscal tissue: meniscal fibrochondrocytes, syn-
oviocytes from the synovial lining, and fibroblasts
from the joint capsule.

Intra-articular injection

Direct administration

Figure 1. Therapeutic genes may be transferred to sites
of articular cartilage damage or to meniscal lesions in vivo
via intra-articular injection or by direct application into
the lesion. Intra-articular injection (upper panel) of the
therapeutic formulation (most often a viral vector) results
in a nonselective transduction of many intra-articular tissues.
Direct administration of the therapeutic formulation (lower
panel) to the target lesion (e.g., an articular cartilage defect)
can be achieved by directly applying a gene vector to the repair
tissue in the defect (left), by matrix-supported application (e.g.,
alginate) of target cells (e.g., articular chondrocytes, meniscal
fibrochondrocytes, progenitor cells) that were previously
genetically modified ex vivo (middle), or by application of a gene
vector attached to a biomaterial (right). In vivo, it often includes
an arthrotomy.
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Articular Cartilage
Introduction

Anatomy, Function, and Pathophysiology. Adult hyaline articu-
lar cartilage is avascular tand aneural and does not possess
a lymphatic drainage.* Its major function is to allow for a
smooth gliding of the articulating surfaces of a joint and to
protect the subchondral bone from mechanical stress. Hya-
line articular cartilage is structured in several laminar
zones and formed by chondrocytes that are surrounded by
an intricate network of extracellular matrix. This cartilagi-
nous matrix is rich in proteoglycans and collagen fibrils
composed of type II collagen but also contains types VI,
IX, XI, and XIV collagens and a number of additional
macromolecules.* Normal hyaline articular cartilage con-
tains about 70% to 80% water, which is mainly bound to
proteoglycans. Articular chondrocytes synthesize and
degrade the extracellular matrix, thereby regulating the
structural and functional properties according to the
applied loads.

The integrity of articular cartilage can be disrupted as a
result of mainly 4 different etiologies.*” These include focal
articular cartilage defects resulting from an acute trauma,
osteoarthritis, osteonecrosis, and osteochondritis disse-
cans.® The resulting articular cartilage defect is character-
ized as being either chondral, involving only the
cartilaginous zones, or osteochondral, reaching further into
the subchondral bone.** Although a chondral defect may be
in part repopulated by cells from the synovial mem-
brane,** it usually remains and may expand over time. An
osteochondral defect is filled with a blood clot that forms if
the bone marrow communicates with the defect.*”*® The
pluripotent, undifferentiated mesenchymal cells of the
blood clot differentiate into chondrocytes and osteoblasts
that later form the cartilaginous repair tissue and the new
subchondral bone. However, over time, this repair tissue
increasingly exhibits characteristics of fibrocartilage, such
as an increased type I and a decreased type 11 collagen con-
tent and may degenerate after several years.”® If left
untreated, secondary osteoarthritis of the joint may result.
Chondrogenic Therapeutic Factors. Strategies for enhancing
chondrogenesis in an articular cartilage defect aim at improv-
ing the differentiation of mesenchymal cells into chondro-
cytes for cartilage repair and osteoblasts for the repair of the
subchondral bone, the production and maintenance of a new
cartilaginous matrix rich in type II collagen and proteogly-
cans, at increasing the cellularity of the repair tissue to pre-
vent the hypertrophic differentiation of chondrocytes, and at
inhibiting articular cartilage degeneration.

Growth and transcription factors are good candidates
for these approaches. The therapeutic efficacy of polypep-
tide growth factors is, however, diminished by their short
half-lives.**' For example, the fibroblast growth factor-2

polypeptide has a plasma half-life of less than 1 hour and is
cleared in some hours after intra-articular administration.*’
To overcome this problem, the idea of applying the gene
encoding for a particular therapeutic protein has gained
attraction.

Candidate factors to support chondrogenesis include
members of the transforming growth factor beta (TGF-B)
superfamily such as TGF-B1 and TGF-B2,%**** bone mor-
phogenetic protein 2 (BMP-2),>"** BMP-7,°*** members of
the fibroblast growth factor family such as the basic fibrob-
last growth factor (FGF-2),” growth/differentiation factor
5 (GDF-5),”" and the parathyroid hormone-related protein
(PTHrP).”®* Cell proliferation is promoted, among others,
by FGF-2%®! and the insulin-like growth factor I (IGF-I).**
Particularly potent candidates to stimulate matrix synthesis
include IGF-1,%** BMP-2 and BMP-7, and the cartilage-
derived morphogenetic proteins (CDMP).*>%

Transcription factors directly modulate the expression of
genes involved in chondrogenesis, such as type II collagen or
aggrecan. Experimental models have demonstrated the chon-
drogenic properties of transcription factors, such as SOX9,%
Cbfa-1/Runx-2,*® Cart-1," the Ets family members,”® and
various signaling molecules as well as extracellular matrix
glycoproteins themselves.”"’* Another attractive approach is
to inhibit degenerative pathways within the repair tissue.
Potential targets include cytokines that mediate catabolic
events, in particular the members of the interleukin-1 (IL-1),”
IL-17,”* and tumor necrosis factor (TNF)” families. These
strategies are based on the inhibition of the production of
matrix-degrading enzymes,”® proinflammatory mediators,”
as well as apoptotic mechanisms.”’

Traumatic Articular Cartilage Defects

Intra-articular Injection. Intra-articular injection is a convenient
way to target the joint space and has been studied using naked
DNA”® or adenoviral,””* retroviral,*** HSV,” lentivirus,”
rAAV,* 3 and nonviral vectors.””® In 1998, Ikeda et al.®°
injected adenoviral vectors encoding for the TGF-B1 gene
into the joints of guinea pigs and reported elevated TGF-f1
levels in the synovial fluid for 2 weeks following gene
delivery. The effectiveness of a direct intra-articular gene
therapy approach in combination with a marrow stimula-
tion technique has been shown by Morisset ez al.*® Full-
thickness chondral defects in equine stifle and knee joints
were treated by microfracturing, followed by intra-articular
application of adenoviral vectors carrying the genes for
interleukin-1 receptor antagonist protein (IL-1Ra) and IGF-
I. Sixteen weeks postoperatively, articular cartilage defects
treated with IL-1Ra and IGF-I showed increased proteogly-
can content and type II collagen expression compared with
defects treated using a marrow-stimulating technique alone.
Yet, articular cartilage defects cannot be specifically

Downloaded from car.sagepub.com at International Cartilage Repair Society on August 21, 2011


http://car.sagepub.com/

Madry et al.

205

targeted with this approach since the transgene is expressed
mainly in cells of the synovial membrane and gene transfer
into articular cartilage defect is a very rare event. There-
fore, many of the gene-based approaches have focused on
direct gene vector delivery into a defect exposed by arthrot-
omy (Table 2).

Arthrotomy

Direct application of a gene vector in vivo. The direct delivery of
therapeutic genes into cartilage defects in depth has long
been arduous due to the reduced capability of nonviral and
various viral vectors to penetrate the dense extracellular
cartilaginous matrix. Following arthrotomy and gene vec-
tor application to cartilage defects, limited transgene
expression was observed only in the superficial cartilage
layers.®® With the implementation of rAAV vectors, direct
gene transfer to cells within defects and adjacent cartilage
has met success. Reporter gene studies demonstrated effi-
cient transgene expression in normal and osteoarthritic
human articular chondrocytes within their native matrix in
situ to depths relevant for clinical applications.®” Moreover,
transgene expression was also present in chondral and oste-
ochondral articular cartilage defects in vivo for at least 4
months.*” rAAV vectors have been manipulated recently to
deliver therapeutic genes such as FGF-2 directly into osteo-
chondral cartilage defects.*® Cartilage repair was signifi-
cantly enhanced 4 months after vector application.*®
Application of biomaterials carrying a gene vector into defects. In
order to avoid a dilution of the therapeutic agents, gene
vectors or modified cells can be delivered in conjunction
with biomaterials such as fibrin, collagen, gelatin, carbohy-
drate-based polymers (polyactic acid/polyglycolic acid,
hyaluronan, agarose, alginate, chitosan), and artificial poly-
mers (dacron, teflon, carbon fibers, polyestherurethane,
polybutyric acid, polyethylmethacrylate, hydroxyapa-
tite).***® When preparations of adenoviral vectors carrying
a marker gene were adsorbed onto type II collagen-gly-
cosaminoglycan matrices and implanted into osteochondral
defects, transgene expression was present until day 21.%
Application of ex vivo genetically modified cells. The direct
transplantation of cells genetically modified ex vivo
involves their isolation, genetic modification, and reim-
plantation into articular cartilage defects. These modified
cells can be applied without (e.g., as coagulated bone mar-
row aspirate) or with supportive matrices. Such compo-
nents include alginate,”** agarose,”** fibrin or type I
collagen gels without”” or with a periosteal flap,”®* and
synthetic biodegradable scaffolds.'® ' Kang et al. were
the first to transplant genetically modified cells into an
articular cartilage defect in vivo.'” In this study, chondro-
cytes were transduced with a retroviral vector. Other studies
used nonviral,'®'% adenoviral,***!"" retroviral,'**!%-11!
and rAAV vectors''? to deliver marker genes in defects via
ex vivo—modified cells. Although engineered chondrocytes

Figure 2. Improvement of cartilage repair in a rabbit
osteochondral defect model in the trochlear groove by combined
ex vivo gene transfer of human insulin-like growth factor | (hIGF-I)
and fibroblast growth factor-2 (hFGF-2) in NIH 3T3 fibroblasts
that were then embedded in alginate spheres and transplanted
into the defects. Histological appearance of osteochondral defects
following treatment with a lacZ implant (left column: A, D), an
IGF-I implant (middle column: B, E), and an IGF-I/FGF-2 implant
(right column: C, F) stained with safranin O. Images (D-F; 40x)
are magnified views of A through C (20x), illustrating the area
of integration between the repair tissue (on the left side of D-
F) with the adjacent normal articular cartilage (on the right
side of D-F). Implants remained in a subchondral location and
are visible at the bottom of images (A, B). Transplantation of the
cotransfected IGF-I/FGF-2 implants accelerated the formation
of the subchondral bone and improved articular cartilage repair
in a magnitude that was larger than with IGF-I alone or when
compared to lacZ implants after 3 weeks in vivo.

are generally transplanted,”*!?%!0+ 106113 gl roblasts, >4
perichondrial,'” periosteal,'™"" or muscle-derived cells'”
have been also applied. The data from these studies showed
that transgenes can be expressed in cartilage defects via ex
vivo strategies, remaining active for about 1 month. This is
significantly longer compared with the application of recom-
binant proteins (Table 2). Figure 2 depicts improvements in
the repair of osteochondral defects following combined gene
transfer of IGF-1 and FGF-2 compared with the application
of a marker gene (lacZ) to NIH 3T3 fibroblasts.'"*

Periosteal cells transduced by a BMP-7 retroviral vector
and attached to a polyglycolic acid scaffold improved carti-
lage repair at 8 and 12 weeks in vivo. Interestingly, this was
the first study in which a growth factor gene was transferred
into a focal defect.”® Since, many reports described the use of
a variety of therapeutic genes like BMP-2, BMP-7, IGF-I,
FGF-2, and TGF-B.2****"!"*120 Sionificant improvement in
articular cartilage repair was noted in these reports (Table 2).
Although most of the evaluations were carried out in small
animal models, Hidaka ef al.*' and, more recently, Goodrich
et al.®" performed arthroscopic implantation of chondro-
cytes genetically engineered by adenoviral transduction with
the BMP-7' or IGF-I'*' gene in horses.

On the basis of such encouraging data, cartilage repair was
addressed by matrix-supported implantation of genetically
engineered mesenchymal stem cells (MSC). Kuroda ef al.'**
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Figure 3. Direct rAAV-mediated gene transfer to rabbit meniscus
explants in vitro using an rAAV-lacZ (left panel) or rAAV-hFGF-2
vector (right panel) (50 mL each vector). Persistent transgene
expression after 10 days in vitro in meniscal explants following
immunohistochemical detection of lacZ (A), while no signal is
present in the control (B). Direct transduction of a rabbit meniscal
explant with rAAV-hFGF-2 results in an increased cell density (D)
compared with the control (C), indicative of the mitogenic effect
of FGF-2 on meniscal fibrochondrocytes. (C, D) hematoxylin and
eosin/fast green. All magnifications, 20x.

implanted BMP-4—transduced MSCs using fibrin glue in
full-thickness cartilage defects in the trochlear groove of
rabbit femurs. After 24 weeks, histological scoring of the
defects revealed significantly better cartilage repair in the
BMP-4 treatment group compared with defects receiving
lacZ-transduced MSCs. Guo et al.'”® seeded TGF-B1-—
engineered MSCs onto poly-L-lysine—coated polylactide
scaffolds in vitro and allografted them into full-thickness
defects in rabbits. This resulted in improved joint repair
with regard to extracellular matrix formation, reconstitu-
tion of the subchondral bone, and inhibition of inflamma-
tory immune responses. Repair of osteochondral defects
was also enhanced by transplantation of MSCs transfected
with the CDMP1 gene, applying a lipofection method.*

A novel method of gene therapy for the repair of osteo-
chondral defects has recently been published by Evans
et al."* Rather than genetically modifying isolated cells,
this technique describes gene transfer to biopsies of muscle
and fat. An adenovirus vector carrying cDNA encoding
human BMP-2 was used for genetic engineering of tissues.

These gene-activated muscle or fad pads were transplanted
into osteochondral defects in rabbits. Histological analysis
after 6 weeks revealed the formation of a proteoglycan-rich
articular surface with subchondral bone beneath and good
union with the adjacent cartilage.

Ivkovic et al.'” used autologous bone marrow, trans-
duced ex vivo, with adenoviral vectors containing the cDNA
for TGF-B1. Implantation of the marrow clot improved the
histological, biochemical, and biomechanical parameters
of partial-thickness chondral defects in sheep at 6 months.

Osteoarthritis

Osteoarthritis (OA) is the leading, most disabling human
condition and prevalent form of arthritis (80%), impairing
the quality of life of millions of people worldwide. OA is a
chronic disorder of diarthrodial joints, mainly characterized
by a slow, gradual deterioration of the articular cartilage that
remains without effective treatment to date. OA not only
affects the cartilage but also the subchondral bone and, to a
minor degree, the synovial lining, ligaments, tendons, and
muscles. Current options to manage OA, such as pharmaco-
logical therapy and reconstructive surgical interventions, do
not allow for the restoration of a native cartilage. OA is a
complex disorder characterized by an activation of inflam-
matory cascades at the molecular level, leading ultimately to
cartilage breakdown, associated with alterations of the phe-
notype of chondrocytes and a loss of the major components
of the cartilage matrix. Under mechanical or biochemical
stress (presence of IL-1 and TNF-0, NO, prostaglandins,
matrix degradation products), the chondrocytes undergo
pathological changes in their gene expression patterns that
lead to an impairment of the overall homeostasis, with
diminished production of normal cartilage matrix molecules
(proteoglycans, type II collagen), enhanced production of
matrix-degrading enzymes (MMPs and adamalysins, includ-
ing ADAMs and ADAMTSs), and decreased responsiveness
to reparative stimuli, ultimately leading to the degradation of
the matrix and cell senescence and apoptosis (NO, Fas/FasL
signaling) by alteration of cell viability.
Gene Transfer InVitro. Target cells in the joint include cells of
the synovial lining, chondrocytes, chondroprogenitor cells,
and surrounding tissues (bone, muscle, tendons, ligaments,
meniscus). Application of nonviral,'>”>?*"12133 3 denovi-
ral 72126136154 0 o roviral vectors? 7126136 140155-159 o o
been achieved in these cell types with more or less success.
Instead, RAAV vectors are potent alternatives as they can
efficiently and durably transduce synoviocytes, %
chondrocytes, 8797165168 N 3638199170 anq cells of sur-
rounding tissues.'?%!"1177

Regeneration of a normal structural and functional car-
tilage might be achieved by the following:
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. inhibiting inflammatory and catabolic pathways,

. stimulating anabolic pathways to rebuild the matrix,
. impeding cell senescence,

. avoiding the pathological formation of osteophytes,

. prevention of apoptosis, and

. influencing several of these processes.

AN N AW

Inhibition of catabolic pathways has been achieved
in vitro by expressing inhibitors of matrix-degrading enzymes
(tissue inhibitor of metalloproteinases, i.e., TIMP),'”*!"
inhibitors of proinflammatory cytokines (IL-1Ra, the solu-
ble receptors sIL-1R or Soluble Tumor Necrosis Factor
Receptor), /137150153162 and chondroprotective cytokines
(IL-4, IL-10)."*"80181 Activation of anabolic processes in
vitro has been noted by single or combined administration
of components of the cartilage matrix or of the enzymes
that synthesize them,'®*'®* of growth factors and receptors
(IGF-I,  FGF-2, BMPs,  TGE-p), %!27131138143-
143147150 ISLISLIBLISS o § of transcription factors (SOX fam-
ily of DNA-binding proteins, i.e., SOX5, SOX6,
S0X9),!30-136-149.I9.167.168 R estoration of cell vitality and
activation of proliferation in vitro have been achieved by
application of IGF-I and FGF-2,*¢%127-3LI68185 te]omerase
(hTERT),”® of inhibitors of apoptosis (bcl-2),"™ or of
HSP70." Interestingly, approaches that influence several of
these processes have been also successfully attempted, like
combining the transfer of inhibitors of catabolism pathways
and of activators of anabolic events (IGF-I/IL-1Ra or IGF-1/
IL-4),"%5L181 a5 well as that of activators of anabolic and
proliferative processes (FGF-2/SOX9 or FGF-2/IGF-I).'®®
InVivo Direct Gene Transfer. The key issue in establishing an
efficient therapy against OA is the accessibility of the tar-
gets to the treatment when they reside in the joint cavity.
The following approaches have been developed to deliver a
molecular composition:

1. systemic delivery, and
2. intra-articular administration (via injection or
arthrotomy).

Systemic approaches are better suited to target diseases
that are systemic in nature like rheumatoid arthritis
(RA).'0+188190 1 ocal administration of components might
be preferable in the case of OA that affects only a limited
number of joints without major extra-articular or systemic
manifestations. The foreign material may be delivered
directly (gene vector preparation) or indirectly (genetically
modified cells).

Several lines of evidence have demonstrated that intra-
articular injection of most vector types leads to a preferen-
tial transduction of the synovium,’**""' being more
suited for strategies aiming at inhibiting inflammatory and
catabolic pathways and a common approach employed
against experimental RA. Successful attempts towards

these goals have been reported by direct application of
vectors coding for IL-4,%2 IL-10,""*!** STNFR alone'®* or
combined with IL-10,' IL-1Ra alone'82034133196.197
combined with sSTNFR,” antagonists and inhibitors of
TGF-B and of the BMPs,'”® HSP70,"*? gene expression
silencers,'” and kallistatin or thrombospondin-1.2**"'

Yet, even if cartilage breakdown can be contained, this

will not be sufficient to fully compensate for the loss of
matrix elements and cells noted during the disease progres-
sion. In this regard, increased synthesis of cartilage matrix
components has been documented following injection of
vectors carrying genes for anabolic factors (IGF-I).*
Ex Vivo Indirect Gene Transfer. Although more complex, ex
vivo gene therapy is considered safer because no free vector
particles are introduced in the body. Modified cells can be
extensively controlled, tested, and selected while main-
tained in culture. Administration of cells is also a means to
increase the cellularity like needed for severe OA.

Synoviocytes have been predominantly employed to
deliver inhibitors of inflammatory and catabolic proc-
esses.”” % Such pathways could be regulated by injecting
synoviocytes transduced to overexpress an IL-1Ra alone?” %
or combined with IL-10.2% Also, dermal fibroblasts have
been modified for this purpose to overexpress an IL-1Ra,
sTNER, or a combination of both.?””

Reduced severity of the induced arthritis was associ-
ated with a decrease in cartilage breakdown, but complete
resurfacing was not achieved. Successful attempts to pro-
mote the formation of new cartilage have been made by
administrating dermal fibroblasts modified to express
BMP-2.'%

Still, preparation of terminally differentiated cells from
unaffected sites remains invasive, with a limited supply, and
represents an additional burden for the patient. Also, commit-
ted cells generally undergo major phenotypic changes upon
passaging in culture, especially chondrocytes. Multipotent
cells might be more suited for transplantation purposes, pos-
sibly leading to the production of a cartilage surface of
enhanced quality compared with committed cells that lead to
the formation of a poorly differentiated fibrous cartilage.
Progenitor cells can be easily isolated from multiple tissues
(bone marrow, periosteum, perichondrium, muscle, fat, sub-
dermis, cartilage, bone, synovial membrane, ligaments), even
in OA patients, maintaining a multilineage potential with a
reliability for differentiation and a capacity for expan-
sion.”'*!"" Indeed, injection of muscle-derived stem cells
modified by combined gene transfer of BMP-4 with sFltl
(a vascular endothelial growth factor (VEGF) antagonist)
allowed for cartilage repair in a rat model of OA.*'**!

Osteonecrosis

Osteonecrosis (ON) is primarily a disease of the subchon-
dral bone that secondarily affects the articular cartilage.
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Initially, a vascular insult is thought to cause an interference
of the microcirculation of the subchondral bone, resulting
in an edema that leads to an increased intraosseous pres-
sure. This leads to ON of the affected segment of the
subchondral bone, which may result in a subchondral insuf-
ficiency fracture, destabilizing the overlying articular carti-
lage and eventually resulting in its collapse and the creation
of an osteochondral defect. Treatment options consist of
conservative therapy in early stages. Precollapse lesions
can be treated with retrograde core decompression, while
later-stage lesions presenting with osteochondral defects
require osteochondral transplants and/or osteotomies, or
ultimately, partial or total knee arthroplasty.*'*

Possible experimental gene therapy approaches need
to be stage dependent, focusing on early stages (when the
articular cartilage is not compromised) at the revascu-
larization of the necrotic bone, while at the stage of
osteochondral lesion, only gene-enhanced osteochondral
transplants might be useful. Katsube et al*'* applied
gene transfer of VEGF, to accelerate revascularization of
the necrotic bone. Using an adenoviral vector encoding
for VEGF, endothelial cells of the rabbit saphenous arter-
ies were transduced. These gene-modified arteries were
then placed with its venae comitantes into necrotic iliac
crest bone in vivo. Angiogenesis in the necrotic bone was
quantified by bone blood flow measurement and assess-
ment of vessel density following microangiography. The
extent of neoangiogenesis was significantly greater in the
VEGF group than the control group, reflected in an
increased capillary density, length of newly formed cap-
illaries, and increased bone blood flow at 1 week postop-
eratively. While this study was restricted to the bone of
the iliac crest, it might serve as a paradigm for the treat-
ment of ON in a subchondral location. Such a therapy
may allow the healing of avascular necrosis before frac-
ture and subchondral collapse occur, preventing the
articular cartilage from damage. More studies with time
points longer than the 1-week evaluation are needed,
preferentially performed in animal models of subchon-
dral ON, such as the femoral condyles of the knee joint,
its second most common location.

Osteochondritis Dissecans

Osteochondritis dissecans (OCD) usually affects children
and young adults and occurs mainly in the knee joint, char-
acteristically in the lateral aspect of the medial femoral
condyle. Possible etiological factors beside a genetic pre-
disposition include ischemia and epiphyseal abnormalities
with subsequent necrosis. For example, disruption of epi-
physeal plate vessels may lead to localized avascular necro-
sis. Its revascularization usually occurs with the formation
of a scar tissue, absorption of necrotic fragments, inter-
trabecular osteoid deposition, and remodeling with new

bone formation. When revascularization is delayed, an
OCD lesion can occur. Clinical treatment principles focus
on stimulation of revascularization or removal of necrotic
subchondral bone together with its restoration (e.g., using
autologous bone transplants), beside the surgical fixation of
an unstable osteochondral fragment.”'

So far, no experimental gene-based treatment has been
proposed for the treatment of OCD. In theory, the same
principles apply for the revascularization of necrotic
subchondral bone, as already outlined for ON with subse-
quent articular cartilage defects. It may be also possible to
enhance the surgical fixation of an osteochondral frag-
ment by applying osteoinductive genes such as the BMPs
to the subchondral bone—osteochondral fragment inter-
face to improve integration of the osteochondral frag-
ment. It is unclear whether the integration of a chondral
fragment may be achieved, a rare indication currently
favored only for surgical refixation of large fragments in
juvenile patients.”'” Likewise, gene-modified osteochon-
dral transplants may be applied at later stages of deep
osteochondral defects.

Meniscal Fibrocartilage
Anatomy, Function, and Pathophysiology

The menisci are semilunar fibrocartilage structures that
transmit weightbearing forces and increase stability, facili-
tate nutrition and provide lubrication for the articular carti-
lage, and promote knee proprioception.?'**'” As the medial
meniscus is less mobile during joint motion,*'®*' injuries
are much more common compared to the lateral menis-
cus.”? Type I collagen is the predominant collagen of the
meniscal tissue.”?' It is arranged with a circumferential
orientation with interspersed radially oriented fibers.””* The
central parts of the menisci are mainly constituted of fibro-
chondrocytes, whereas fibroblasts are the predominant cell
type in the peripheral regions.””® Meniscal blood supply is
restricted to the peripheral 10% to 25% of the meniscal tis-
sue.”*** Nourishment in the central area is provided only
by diffusion of the synovial fluid,”*® perhaps playing a role
in the poor healing capacity of central lesions.””***” Gene
transfer strategies may be applied for the following:

1. meniscal repair, and

2. meniscal reconstruction, using
2.1. meniscal substitutes, and

2.2. meniscal allografts.

Meniscal Repair

Meniscal tears are common®****’ and predispose the

affected joint to develop secondary OA.*° Tears of the
meniscus in the vascularized peripheral parts can be
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repaired by sutures, while tears of the central avascular
parts are treated by arthroscopic partial meniscectomy.
Gene Transfer Strategies: In Vitro Studies. Gene transfer strate-
gies for the repair of meniscal tears focus on the delivery of
therapeutic agents, for example, growth factors, to the site
of the meniscal lesion. This can be performed either via
direct application of gene vectors or by transplantation of
genetically modified cells overexpressing therapeutic
genes. Treatment of meniscal fibrochondrocytes with
recombinant growth factor proteins such as the platelet-
derived growth factor AB (PDGF-AB),*'*** FGF-2,'77-#%
BT GR.|P5B840 TGR_p1,12233294122 gvp 728 o)
TGF-p3** has been shown to improve the phenotypical
and biochemical properties of the cells in vitro. Fibrochon-
drogenesis of stem cells is enhanced by incubation with
growth factors such as TGF-B1%** or TGF-B3 in combina-
tion with BMP-4.2** The possible application of gene trans-
fer strategies in meniscal repair has first been investigated
by Goto et al."*’ The lacZ marker gene was transferred to
meniscal cell cultures using retroviral and adenoviral vec-
tors. In a next step, the marker gene was applied to human
meniscal fragments and whole lapine menisci using direct
adenoviral gene transfer and transplantation of meniscal
fibrochondrocytes transduced with a retroviral vector.
Transgene expression was detected in meniscal explants
following ex vivo gene transfer for at least 20 weeks. Suc-
cessful transfer of the /acZ marker gene was also achieved
by rAAV-mediated transfer into human and lapine fibro-
chondrocytes in vitro.'” Encouraged by these findings, in
2000, the group of Chris Evans transferred the gene
encoding for TGF-B1'*® to meniscal cells in vitro, result-
ing in enhanced synthesis of proteoglycans and collagen.
Zhang et al. used a lipid-based gene transfer system to
deliver the gene encoding for human IGF-I to meniscal
fibrochondrocytes, yielding accelerated proliferation and
differentiation of the modified cells."** Recently, we tested
the hypothesis that overexpression of FGF-2 through
rAAV vectors leads to detectable metabolic changes in
human meniscal fibrochondrocytes and inside defects of
human meniscal explants.'”” Application of the rAAV-
hFGF-2 vector allowed for enhanced cell proliferation and
survival in vitro (Figure 3). The idea of applying gene ther-
apy protocols to deliver fibrochondrogenic agents to menis-
cal tears was supported by a significant reduction of the
amplitude of meniscal tears after FGF-2 treatment in this
study.!”’

Gene Therapy: In Vivo Studies. Only few reports have evalu-
ated the feasibility of gene therapy strategies to enhance
the repair of meniscal tears in vivo. Experimental studies
have shown that repair in the central part of the meniscus
can be promoted by various chemotactic and mitogenic
stimuli delivered by an autologous fibrin clot***** or a free
graft of synovium®’** in vivo. In a sheep model, longitudi-
nal tears of the anterior horn of the medial meniscus were

sutured using VEGF-coated sutures. Interestingly, meniscal
repair was not enhanced in the VEGF treatment group.”****
In 1999, methods of direct and indirect gene transfer to
meniscal lesions were compared.”*® In a lapine model, a
suspension of adenoviral vectors carrying the /acZ marker
gene was mixed with whole blood, and the clot was inserted
into 2-mm-long incisions in the medial meniscus. In the
same study, using a canine model, retrovirally transduced
allogenic meniscal fibrochondrocytes carrying the lacZ
gene were embedded in collagen gels and transferred to
partial-thickness circular defects (depth, 3 mm; diameter, 2
mm) in the medial meniscus. Gene expression persisted for
at least 3 weeks in the lapine model but for 6 weeks within
the transplanted meniscal fibrochondrocytes in the canine
model. In another animal study,'” longitudinal incisions
were created in the avascular zone of the medial meniscus
of rabbits. When rAAV-lacZ constructs were injected int-
ralesionally, X-Gal staining was present by day 20 postop-
eratively, the longest time point evaluated.

Meniscal Reconstruction

Meniscal Substitutes. Meniscal substitutes have been pro-
posed as a means to overcome problems associated with
meniscal allografts and to promote meniscal repair of seg-
mental defects, for example, resulting from a partial menis-
cectomy.””'*** Meniscal substitutes already in clinical use
are based on porous matrices of type I collagen/gly-
cosaminoglycan (Menaflex, ReGen Biologics, Hackensack,
NI)*** or polyurethane (Actifit, Orteq, London, UK).*>*

The feasibility of genetic engineering of meniscal fibro-
chondrocytes has already been described above. However,
in the treatment of circumscribed meniscal defects, direct
gene vector administration into injured knee joints may be
difficult to achieve because a loss of the bradytrophic
meniscal tissue may hardly be restored by local cells, even
after administration of mitogenic and anabolic genes.
Therefore, gene therapy in the treatment of meniscal defects
may need to be used in combination with the transplanta-
tion of modified cells or tissues.

Tissue engineering involves the combination of cells, engi-
neered extracellular matrices, and biologically active mole-
cules for tissue regeneration.”>’**® Over the last 2 decades,
numerous tissue engineering strategies have emerged for the
replacement of meniscal tissue.”*”*' In general, 2 basic
approaches for meniscal replacement can be distinguished:

262,263 VErsus

264,265

1. application of acellular matrices
2. application of cell-seeded matrices.

Several concepts for treating circumscribed meniscal
defects concentrate on meniscal replacement by acellular
matrices,”****?* avoiding possible risks associated with
transplantation of human allografts (e.g., failure rate,
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immunoreaction,””® disease transmission’’"). Different
types of meniscal substitutes, such as decellularized allo-
genic and xenogenic grafts,***%*">?7 collagen grafts,”>*"*
permanent synthetic scaffolds,”' and biodegradable scaf-
folds based on small intestine submucosa,””>’® poly-lactic
acid (PLA), or poly-glycolic acid (PGA),””*** have been
used in experimental and clinical studies. However, after
transplantation of acellular meniscal constructs into defects,
the transplants are populated by synovial fibroblasts, result-
ing in a scar tissue with poor biomechanical proper-
ties.?*>?* Therefore, some tissue engineering approaches
focus on additional cell-seeding techniques prior to trans-
plantation.”'** Meniscal cells,”®** articular chondro-
cytes,”*** synovial fibroblasts,”** and MSC* have been
proposed as potential cell sources and have been cultivated
in vivo and in vitro on various matrices.”®’ In addition, dif-
ferent environmental factors such as growth factors have
been used to optimize cell proliferation in vitro.*

Gene therapy may aid to further enhance the fibrochon-
drogenic potential of tissue-engineered transplants. In
2002, Hidaka et al.*®" applied a gene transfer protocol to
enhance the vascularization and blood supply of cell-
seeded bioengineered meniscus transplants. Bovine menis-
cal cells overexpressing hepatocyte growth factor (HGF)
were seeded onto PGA scaffolds and transplanted subcuta-
neously in athymic nude mice for 8 weeks. Ink injection
studies showed that HGF-treated meniscal cells formed a
tissue that contained significantly more blood vessels than
the controls. In another preliminary ex vivo study, Steinert
et al."* transduced primary meniscus cells and bone mar-
row—derived MSCs with adenoviral vectors encoding for
marker genes or TGF-B1. Modified cells were seeded in
type I collagen-glycosaminoglycan (GAG) matrices and
transplanted into defects of bovine menisci explants. /n vitro,
the vectors efficiently transduced meniscal cells and MSCs,
and transgene expression remained elevated after incor-
poration of the cells into matrices. Transfer of TGF-B1
increased the fibrochondrogenic potential of modified cells,
and transplantation of the TGF-B1-transduced constructs
resulted in satisfactory filling of the lesions ex vivo (Table 3).

A recent in vivo work on the use of gene transfer to
enhance meniscal repair has been published by Zhang er al.***
Following an indirect gene therapy approach without tissue
engineering features, the authors created full-thickness
meniscal defects in the avascular area of the anterior horn
of the medial meniscus in a goat model. Bone marrow stromal
cells were transfected with the gene encoding for human
IGF-I using a nonviral transfection system (FuGENE 6)
and suspended in calcium alginate prior to injection into the
meniscal defects. After 16 weeks, the resulting repair tissue
was improved according to MRI and histological and bio-
chemical evaluation and compared with the controls (Table 3).
Meniscal Allografts. Meniscal reconstitution with allo-
grafts””*>% is a therapeutic option especially for young and

symptomatic patients with a history of lateral meniscectomy
in a normally aligned, stable joint without severe degenera-
tive changes of the articular cartilage. A recent review* sug-
gests that meniscal allograft transplantation improves pain
and function in the short and intermediate term.

Application of gene-based strategies has been suggested
to improve remodeling of meniscal allografts.*”” Martinek
et al.’® studied the feasibility of gene transfer in lapine
meniscal allografts ex vivo using a retroviral vector encod-
ing the marker gene /lacZ. Subsequently, unilateral meniscal
replacements were performed with these engineered allo-
grafts. Transduced fibrochondrocytes migrated into the
depth of the graft, while transgene expression persisted for
up to 8 weeks. This investigation suggests potential prom-
ise for growth factor delivery in autografts and allografts
prior to implantation.

Clinical Gene Therapy Trials

Preclinical data, as those described above, have encouraged
the initiation of human clinical trials originally for arthritis.
The first studies were based on the ex vivo retroviral gene
transfer of a human IL-1Ra sequence in synoviocytes from
patients with end-stage RA followed by reinjection of the
modified cells in the metacarpophalangeal joint.”**** The
aim of these studies was to evaluate the possibility of trans-
ferring genes to human joints and expressing them intra-
articularly in a safe fashion acceptable to the patients. The
use of these protocols has permitted extensive testing of the
cells prior to reimplantation, demonstrating successful
expression of the transgene locally vis-a-vis control joints,
without adverse events related to the treatment but with
clinical improvements in some of the patients, encouraging
the implementation of phase II studies (pending).'*-**3!%13
Another protocol has been initiated for intra-articular plas-
mid®'® delivery of the HSV thymidine kinase gene to the
synovial lining of RA patients followed by administration
of ganciclovir to achieve synovial ablation,'*="3!"=!* byt
this protocol has been closed because of a failure to recruit.
A new phase [ trial for RA involved the direct in vivo intra-
articular injection of an rAAV vector carrying the sequence
for a fusion protein as sSTNFR on an immunoglobulin mol-
ecule (tgAAC94 protocol).’'” As the study revealed that the
treatment was safe and well tolerated in subjects without
use of concurrent systemic TNF-a antagonist,'*!!*12314317 5
phase I/II trial was subsequently started®'® with the possi-
bility to include patients who were already taking systemic
TNF blockers and the administration of a second injection
of tgAAC94. As one of the participants who was simultane-
ously being treated with systemic TNF antagonist and other
immunosuppressive medications died after receiving the
second injection, the trial was placed on hold by the U.S.
Food and Drug Administration (FDA) to investigate, in
parallel with the Recombinant DNA Advisory Committee
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Recombinant DNA Advisory Committee (RAC), the circum-
stances of the demise of the patient. The death was apparently
due to a disseminated infection with Histoplasma capsula-
tum, a fungus endemic in the region of origin of the volun-
teer, and to an immunosuppression.’'**"***! Indeed, known
serious complications of the particular TNF antagonist are
susceptibility to H. capsulatum. The most probable explana-
tion is that the subject was already infected with the fungus
when receiving the second injection of tgAAC94. As the
committee felt that the gene therapy protocol was very
unlikely to have played any significant role in the event based
on a large body of data from the independent investigations
and since rAAV has been used safely in 47 previous human
gene therapy clinical trials, the evaluation has been reopened
with some modifications (exclusion of patients with elevated
temperature, localized symptoms, fatigue, or with history of
opportunistic infection), requiring additional monitoring
(repeated blood counts, serum chemistry, vector DNA and
transgene product titration, analysis of T-cell responses to
AAV), as a possible role of the gene transfer in this course has
not been definitely excluded (presence of neutralizing anti-
bodies to the AAV capsid, occasional detection of vector
genomes in the blood at the highest vector dose). Regarding
OA, a phase I protocol is currently ongoing, based on an ex
vivo approach using the retroviral transfer of TGF-p.*'

Gene Doping

Although the previously discussed gene-based approaches
may have potential value for the treatment of articular car-
tilage defects and meniscal lesions, some of the therapeutic
genes used in these studies have been also implicated for
gene doping,’* a term referring to the potential misuse of
gene therapy for the purposes of enhancing athletic per-
formance.’>*>** Possible genes with such potential include,
but are not limited to, growth hormone and IGF-I,**® eryth-
ropoietin (Epo),*”” VEGF,**® FGF-2, and endorphins.*”

IGF-I, the prime target of growth hormone action, is a
potential candidate gene. A number of studies have shown
that upregulation of IGF-I stimulates muscle growth and
improves muscle function.’*® Interestingly, this increase in
muscle volume is not reflected by detectable increases in
circulating IGF-I. While favorable responses have been
obtained in animal studies, the transfer of such techniques
to humans with the goal of a higher performance still
presents many technical challenges.

The hormone Epo is produced by the peritubular capil-
lary endothelial cells in the kidney. Under hypoxic condi-
tions, Epo is produced and secreted, increasing the
production of red blood cells. Eero Méntyranta, a Finnish
cross-country skier who won 2 gold medals in the 1964
Olympics, was born with a mutation in the Epo receptor
gene that allowed his blood to carry significantly more
oxygen than an average person.”’ Recombinant Epo has

been used already as a performance-enhancing drug.
Because of differences in its peptide sequence compared
with the endogenous protein, it may be detected in blood.
Recently, a viral vector for the release of Epo in response
to low oxygen concentrations has been developed under the
trade name Repoxygen (Oxford BioMedica, Oxford, UK).
The viral vector of undisclosed origin carries the human
Epo gene under the control of a hypoxia control element
(HRE). At low oxygen concentrations, HRE switches on
the expression of the transgene. The vector is designed to
be delivered by a simple intramuscular injection, resulting
in the synthesis of recombinant Epo by muscle cells, rather
than by cells of the liver or kidneys. Initially developed to
treat anemia, there have been speculations in the media that
it has been already applied for doping purposes.®’

Recently, genetically engineered mice have been created
with an alteration in energy metabolism based on overex-
pression of the gene for phosphoenolpyruvate carboxyki-
nases (PEPCK-C). PEPCK-C is an enzyme of the lyase
family that plays a role in the metabolic pathway of gluco-
neogenesis, converting oxaloacetate into phosphoenolpyru-
vate and carbon dioxide. These transgenic PEPCK-C mice
carry a chimeric gene in which a copy of the cDNA for
PEPCK-C is placed under control of the skeletal actin gene
promoter, directing overexpression of PEPCK-C exclu-
sively to skeletal muscle. PEPCK-C mice were more
active, could run longer and faster, and used fatty acids
more efficiently and produced far less lactate than control
animals.**> Whether these data can be corroborated by stud-
ies in large animals remains to be determined.

Taken together, there is an emerging body of results
from a number of transgenic and somatic gene transfer
studies that suggest the principle of gene transfer may find
application to enhance athletic performance. Many of the
genes are already cloned in functional vectors, and some of
them are being evaluated in clinical trials for the treatment
of diseases. However, therapeutic gene transfer to humans
is still technically challenging, and no clear evidence has
been given that athletes have been using gene technology
to enhance their performance. For antidoping authorities,
the challenge will be to detect these endogenously pro-
duced gene products because of the homology between the
transferred cDNA, the homology of the endogenously pro-
duced protein, and the limited specificity of indirect detec-
tion procedures.’” Further studies in this field are needed
since a possible uncontrolled use of these gene vectors
imposes potential high risks for both the athlete and the
general public.

Outlook

Despite these encouraging data, application of gene trans-
fer approaches in the treatment of articular cartilage and
meniscal lesion tears is still in its infancy. Although the use
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of gene therapy holds great promise, issues that need to be
addressed include the duration of transgene expression,
further studies in clinically relevant animal models of
articular cartilage and meniscal lesions, the benefit of using
ex vivo genetically modified cells versus direct gene trans-
fer approaches, and the identification of (an) optimal thera-
peutic factor(s) for each particular clinical problem. Future
studies will also have to shed light on the safety of these
approaches regarding the nonlethal nature of these dis-
eases. A successful application of gene therapy for cartilage
repair requires the combined effort of orthopedic surgeons
continuing to ask clinically relevant questions and of basic
scientists further improving the currently available gene
transfer systems.
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