

# Contemporary Anterior Cruciate Ligament Outcomes: Does Technique Really Matter?

Peter N. Chalmers, MD, Nathan A. Mall, MD, Adam B. Yanke, MD, and Bernard R. Bach Jr, MD

Significant advances have been made in anterior cruciate ligament reconstruction surgical technique. Further progress is being made to improve our ability to replicate anatomy with minimally invasive techniques. Presently, wide intersurgeon variation exists regarding several crucial aspects of the procedure, suggesting that the optimal technique continues to evolve. After reviewing the history of anterior cruciate ligament reconstruction surgical technique and the surgical anatomy, this manuscript outlines the various debated topics in the literature surrounding the method for drilling the femoral tunnel (outside-in vs transtibial vs anteromedial), graft selection and method of fixation as it applies to surgical technique, number of bundles reconstructed (single vs double), and surgical approach (incision vs all-inside). For each, the best available clinical evidence is reviewed to determine advantages and disadvantages. Patient factors that may indicate the use of a certain technique and special considerations such as reconstruction in the skeletally immature are discussed.

Oper Tech Sports Med 21:55-63 © 2013 Elsevier Inc. All rights reserved.

**KEYWORDS** anterior cruciate ligament reconstruction, anteromedial, double bundle, surgical technique, transtibial

Anterior cruciate ligament (ACL) tears are among the most common knee injuries, occurring in up to 5% of females by age 50.1 Surgical reconstruction is among the most commonly performed orthopedic procedures with estimates of >100,000 ACL reconstructions performed annually.2 Wide variation exists within surgical techniques.3 These variations have contributed to a renewed interest in biomechanical replication of the ligament's function through anatomic reconstruction.4-9 These developments have been clinically driven by several series associating clinical failure with intraoperative technical errors.9-13 Surgeons have lessened surgical trauma through increasingly minimally invasive approaches.3,14,15

This manuscript discusses the various reconstruction techniques through interpretation of their anatomical and biomechanical bases as validated by clinical outcomes, seeking to discern which advances provide additional benefit over previous techniques. Heterogeneity within method of tunnel

drilling (transtibial [TT] vs anteromedial [AM] vs outsidein), <sup>16-21</sup> graft selection (autograft vs allograft and patellar tendon vs hamstring tendon), <sup>2,22,23</sup> method of fixation (suspensory vs aperture), <sup>24-27</sup> number of bundles reconstructed (single vs double), <sup>28-31</sup> and approach (incision vs "all-inside"), <sup>14,15</sup> will be addressed using the best available evidence. Much has been written about ACL surgical technical modifications; however, little high-quality evidence exists. A recent systematic review of all studies that specified that they had used an "anatomic" reconstruction identified 74 manuscripts—but 83% of these were level III or less. <sup>31</sup>

# **Historical Perspective**

Historically, initial attempts were made at primary ligamentous repair.<sup>32-34</sup> The majority of efforts after the late 1970s were directed toward reconstruction.<sup>35</sup> Early attempts reconstructed the constraint provided by the ACL to internal tibial rotation<sup>36</sup> through extra-articular tenodesis.<sup>32,37-39</sup> Some examples included the "Slocum pes plasty," which involves a 180 degree superior rotational "flip" of the pes anserine tendons, <sup>40</sup> the "Macintosh" in which the iliotibial band (ITB) was passed beneath the lateral collateral ligament and internuscular septum and transfixed back on itself (Macintosh I) or placed "over the top" and intra-articularly (Macintosh II),<sup>3</sup>

Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL.

The work for this manuscript was performed at Rush University Medical Center in Chicago, IL.

Address reprint requests to: Bernard R. Bach Jr, MD, Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W Harrison St, Chicago, IL 60612. E-mail: brbachmd1952@gmail.com

the "Losee" in which the ITB was also passed beneath the lateral gastrocnemius tendon and through an extra-articular tunnel, <sup>41</sup> and the "Andrews mini-reconstruction" in which the ITB was divided into 2 strips that were tenodesed to the lateral femoral condyle such that 1 strip tightened in flexion and 1 in extension. <sup>42</sup>

As understanding of the importance of the ACL as a restraint to anterior tibial translation developed, 43 as well as the development of the ability to test anterior translation with the Lachman test,44 surgeons began to migrate toward intra-articular repairs, which better constrained sagittal plane laxity by centering the reconstruction in the coronal plane. Intraarticular reconstruction was first paired with extra-articular augmentation, and then used as a sole technique as growing evidence suggested that the nonphysiologic kinematics of extra-articular reconstruction combined with the extent of surgical dissection necessary could contribute to the progression of degenerative joint disease.<sup>3,45</sup> These repairs migrated toward the use of free grafts (usually the patellar tendon<sup>46</sup> and the hamstrings tendons)47 passed through tibial and femoral tunnels with an intervening intra-articular segment.3 This platform provides the basis for all modern reconstructions. However, prior techniques have aimed for the 1 o'clock (or 11 o'clock) position in search of a more "isometric" point on the femur. 48 Recent literature on the anatomy of the ACL and the biomechanical function of vertically oriented grafts compared with anatomic grafts has altered this thinking.<sup>8,49-52</sup>

### **Anatomy**

Increasing attention has been directed toward reconstruction of patient anatomy, specifically because nonanatomic repairs have been linked to graft attenuation, graft impingement, failure to reconstitute rotational stability, and failure to reconstitute sagittal plane stability. Anatomic reconstruction whereby the Lachman and pivot shift tests are eliminated should be the operative goal of ACL surgery. The surgeon must develop a full understanding of the anatomy of the native ACL (Fig. 1). A full review is provided elsewhere within this issue. Of note, significant variation exists between patients with regard to the location of these footprints. By definition, anatomic reconstruction is predicated on replication of each patient's anatomy, and thus for reconstruction to be "anatomic," it must be individualized.

# **Method of Tunnel Drilling**

Although the 2-incision "outside-in" technique evolved in the mid 1980s and was used initially for arthroscopic ACL reconstructions, a transition in this technique evolved around 1990 to a 1-incision technique in which the femoral tunnel was drilled by passing the drill through the tibial tunnel, that is, the TT technique. Excellent outcomes have been reported using both techniques. <sup>54-57</sup> However, the TT approach constrained placement of the femoral tunnel based on the location and orientation of the tibial tunnel, whereas the 2-incision technique allowed independently drilled femoral and tibial tunnels. <sup>9,51,58</sup> A reconstruction with this graft



**Figure 1** (A) Femoral and (B) tibial footprints for the anteromedial and posterolateral bundles of the anterior cruciate ligament.

alignment provides stability in the sagittal plane, but these tunnels are nonanatomic and may not restore rotational stability. In this case, the pivot shift phenomenon will persist and the patient will be predisposed to poor functional outcomes and dissatisfaction with their surgical result.<sup>8,49-52</sup> A vertically oriented graft replicates the AM ACL bundle.

The technical errors related to the 2-incision technique were often related to anterior placement of the femoral and tibial tunnels. With the evolution of the single-incision technique, surgeons achieved more accurate placement of the femoral tunnel in the sagittal plane, at the expense of more superior placement of the femoral tunnel in the coronal plane. Additionally, particularly with hamstring grafts that used smaller tibial tunnels, the tendency was to place the tibial tunnel too posterior in the sagittal plane. In fairness to the early investigators of the TT technique, isometric plots of the ACL femoral footprint suggested that one should aim superiorly in the intercondylar notch.<sup>48</sup>

These concerns regarding the TT approach led to the development of the AM technique in which the femoral tunnel is drilled through an accessory medial arthroscopic portal



**Figure 2** Arthroscopic image of drilling of the femoral tunnel using the anteromedial portal.

with the knee in hyperflexion (Fig. 2).9,51,58 The AM portal technique was initially popularized by O'Donnell in an attempt to reduce divergence of interference screw fixation on the femur. 59 This technique allows independent positioning of the femoral and tibial tunnels, theoretically improving the ability of the surgeon to achieve anatomic placement of the tunnels. However, the AM technique is technically demanding. Drilling is best performed in a difficult-to-maintain hyperflexed position. The reamer passes immediately adjacent to the medial femoral condyle and anterior horn of the medial meniscus and endangers both of these structures. Hyperflexion can obscure visualization, and the reamer can displace the fat pad into the arthroscopic view, further reducing the exposure. 60,61 The AM technique also leads to shorter femoral tunnels, possibly predisposing to fixation failure and graft tunnel mismatch. 62,63 Biomechanical studies have linked the AM technique to supraphysiologic graft tension, which may lead to increased articular contact pressures, graft breakdown, or tibial subluxation.<sup>26,64-68</sup> Several researchers have demonstrated that the centroid of the femoral footprint can be reached using a TT approach with appropriate modifications of surgical technique, 49,69-71 and thus be used to perform an anatomic reconstruction (Fig. 3), so some surgeons may be hesitant to switch femoral tunnel drilling methods. Others may believe the benefit of greater freedom in femoral tunnel location outweighs technical difficulties associated with the AM technique. It should be stressed that inadequate knee flexion will result in intratunnel posterior wall violation (ie, blowout) with this technique. However, recently, flexible reamers have been developed as an alternative to the TT technique of the extreme hyperflexion required with AM drilling.

Controversy persists within the orthopedic community about which of these techniques is preferable. A recent metaanalysis that specified that an "anatomic" reconstruction was used, noted roughly one-half of those articles specified that a TT approach was used and roughly one-half specified that an AM portal approach was used. <sup>31</sup> Only 2 directly comparative clinical studies exist, the findings of which directly conflict with one another. <sup>17,72</sup> The TT technique continues to be the method of choice for 70%-85% of the members of the American Orthopedic Society for Sports Medicine and the American Academy of Orthopedic Surgeons according to recent surveys. <sup>16</sup>

#### **Graft Selection**

A variety of graft options exist in ACL reconstruction. The 2 most popular options are bone-patellar tendon-bone (BPTB) and 4-stranded gracilis/semi-tendinosis. Both grafts can be obtained in the majority of patients as autografts, and both grafts can be used as allografts. Debate exists within the literature regarding which of these options provides the best surgical outcome. 2,73 Only BPTB allows osseous fixation on the graft. Of the available grafts, BPTB is both the stiffest at time zero and the least viscoelastic, which theoretically could provide reduced laxity on examination.74,75 Comparative studies, including numerous retrospective and prospective trials, some randomized, and 2 separate meta-analyses have been performed, with some concluding that BPTB provides reduced laxity, and others concluding that graft selection does not influence laxity.<sup>2,23,53,73</sup> Given the ambivalence of the evidence available to date, no strong recommendations can be made in favor of either graft. Graft selection remains a matter of surgeon and patient choice. However, the patient must be informed and the surgeon must be aware that certain surgical techniques (the double-bundle technique, the allinside technique, etc.) rely on the use of soft tissue grafts, and thus if the surgeon or the patient is uncomfortable with this graft type, these techniques cannot be performed. 73 There are



**Figure 3** Arthroscopic image of a completed anterior cruciate ligament reconstruction using a transtibial approach to drilling of the femoral tunnel demonstrating tunnel placement low on the wall at roughly the "10:30" position.



Figure 4 Schematic images of (A) single- and (B) double-bundle anterior cruciate ligament reconstructions.

some data that indicate that the smaller tunnels used in hamstring reconstruction may preclude anatomic femoral location with a TT technique. <sup>76</sup>

#### **Method of Fixation**

Several different methods exist for graft fixation. Generally, these techniques can be divided into "intratunnel" fixation in which the graft is fixated within the tunnel itself, such as with an interference screw, and "suspensory" fixation in which the graft is fixated at or beyond the extra-articular end of the tunnel, such as a staple or cortical button. Suspensory fixation may subject grafts to the "windshield wiper" or "bungee" effect in which graft micromotion occurs within the tunnel with knee flexion and extension. This may draw joint fluid within the tunnel, may contribute to tunnel widening, and may abrade the graft and lead to early failure, although no clinical evidence exists to support these theoretic concerns.<sup>24</sup> Fixation methods can vary in stiffness by an order of magnitude, with interference screws and Washerloc® (Biomet, Inc, Warsaw, IN) combinations having the greatest stiffness.

One concern using aperture fixation in the form of an interference screw is colinearity of the screw with the graft. Graft-screw divergence can reduce the fixation strength<sup>24-27</sup> or compromise the graft itself.<sup>14,15,61</sup> Some authors have recommended accessory portals for screw insertion. Several authors claim that this may be more difficult using the AM technique because of the hyperflexion required.<sup>15,60</sup>

## Single- Vs Double-Bundle Reconstruction

The link between nonanatomic tunnel placement and clinical failure, <sup>8,49,52</sup> likely owing to failure to provide physiological

rotation laxity, 50,51 has lead to the concept of a reconstruction of both AM and posterolateral bundles of the ACL (Fig. 4). 28-31 Several technical variations already discussed are necessary for this type of reconstruction including the AM approach to drilling of the femoral tunnel, the use of hamstring or other entirely soft tissue grafts, and suspensory fixation (eg, Endobutton, Smith and Nephew, Andover, MA). Although variations exist, the technique generally involves (1) preservation of the tibial and femoral footprints for referencing intraoperatively, (2) minimal or no notchplasty, (3) drilling 2 tibial tunnels with the aimer set at 55 and 45 degrees for the AM and posterolateral tunnels, respectively, to provide tibial tunnel divergence, 30 (4) sizing the grafts specifically for the tunnels, (5) drilling the femoral tunnels either transtibially or through the AM portal, (6) graft passage, (7) tensioning of each bundle separately, and (8) suspensory fixation.<sup>28</sup> Generally, femoral tunnel divergence is provided by the use of the TT technique for drilling the AM femoral tunnel and the AM portal technique for drilling the posterolateral femoral tunnel.<sup>28</sup> A variety of soft tissue grafts have been used, including hamstring tendon (auto- or allograft), tibialis anterior allograft, quadriceps tendon (auto- or allograft), and Achilles tendon allograft.<sup>28</sup> Several contraindications exist to performing a double-bundle reconstruction, including insufficient footprint size (<14 mm) to allow the positioning of 2 tunnels with a 2-mm bone bridge between tunnels, a narrow intercondylar notch (<12 mm), and open physes.<sup>30</sup>

Although this technique was developed in pursuit of anatomic reconstruction, both single- and double-bundle reconstructions can be performed anatomically and nonanatomically. Both techniques require careful attention to tunnel positioning; performing a "double-bundle" reconstruction does not in-itself guarantee an anatomic reconstruction. If the bundles are inappropriately placed or tensioned, this could result in a less kinematically normal knee than that obtained

with a vertical single-bundle reconstruction owing to impingement between the grafts and abnormal graft tensions. Double-bundle failures can lead to a particularly complex revision procedures secondary to tunnel expansion and overlap often requiring a staged bone grafting and subsequent revision procedure.

One additional technique consideration with the doublebundle reconstruction is the tensioning protocol. Secondary to the anisometric position of their respective footprints, the AM bundle has greatest physiological tension at 60 degrees, whereas the posterolateral bundle has greatest physiological tension at 0-15 degrees. 77 Biomechanically, this provides the basis for tensioning the AM bundle at 45-60 degrees of flexion and the posterolateral bundle at full extension. A recent in vivo study compared tensioning of the AM bundle at either full extension or 20 degrees of flexion and tensioning of the posterolateral bundle at 20 or 45 degrees of flexion. Intraoperative computer-navigated laxity data and postoperative pivot shift and KT2000 testing suggested that tensioning both bundles at 20 degrees of flexion provides the most stable knee with respect to both rotation and translation.<sup>78</sup> Studies conducted in cadaver knees using similar methodologies have had similar conclusions.<sup>79</sup>

Clinical outcomes comparing single- and double-bundle reconstructions have been equivocal. <sup>29,80</sup> Although some authors have demonstrated superior rotational control <sup>30</sup> and reduced anterior translation with double-bundle reconstruction, <sup>81</sup> other large, well-conducted, adequately powered randomized clinical trials have failed to demonstrate any difference between these techniques. <sup>82</sup> Meta-analyses of these clinical trials have also failed to find any demonstrable difference in a variety of clinical outcome measures. <sup>29,80</sup> Several authors have suggested that more sensitive outcome measures are necessary to demonstrate any difference. It remains unclear whether such a difference would be clinically significant should one exist statistically. <sup>28,30,31</sup>

# The Minimally Invasive Approach

These techniques, combined with improved perioperative and postoperative pain and inflammation control regimens and alterations in patient expectations, have allowed outpatient ACL reconstruction. 54-56 Over time, ACL reconstruction has become progressively less invasive, with less surgical trauma.3 Although initial reconstructions involved lengthy incisions for exposure of lateral structures for extra-articular tenodesis, 32,37,39 modern techniques using allograft often have no incision >3-4 cm.3 Although providing improved patient comfort and satisfaction, it remains unclear whether more minimally invasive techniques affect long-term outcomes with respect to stability, range of motion, strength, and functional outcome measures.<sup>83</sup> For instance, a recent meta-analysis of 4 randomized clinical trials comparing the endoscopic technique to the outside-in technique for the creation of the femoral tunnel, which does involve lateral extra-articular dissection, was unable to demonstrate any ad-



**Figure 5** Schematic image of an "all-inside" anterior cruciate ligament reconstruction.

ditional benefit provided by the endoscopic technique, although power analyses are lacking and type II error is possible. At our institution, when compared with the endoscopic technique, the dual-incision technique had longer postoperative hospitalization between 1986 and 1991, averaging 2.6 days, and led to increased postoperative pain, likely due to violation of the posterior capsule. Additionally, the dual-incision technique was associated with a higher rate of postoperative knee stiffness, perhaps related to posterior capsular perforation with the femoral rear entry aimer, more extensive dissection, and a protocol during that period that avoided immediate extension recovery. 55

Recently there has been interest in further decreasing the surgical trauma of ACL reconstruction through "all-inside" techniques (Fig. 5).84 These techniques allow ACL reconstruction through 4 "stab" incisions and specialized instrumentation. A specialized guidepin must be used that can be converted into a retrograde drill (ie, retroreamer technique) once the tip is intra-articular and then converted back into a guidepin once the drilling is complete. An "outside-in" technique can be used for the femur. In both cases, the drilling does not progress to the superficial cortex. Thus, sockets are created for the graft on both the femur and tibia, which leaves the innervated periosteum intact, theoretically decreasing postoperative pain and inflammation. The tunnels can be independently positioned, which avoids the potential limitations of the TT technique. Although thus far only soft tissue grafts have been used for this technique, a BPTB graft could theoretically be used, although such a procedure would be technically demanding. If suspensory fixation is placed, this technique allows the surgeon to use the buttress of the anterior tibial cortex to place suspensory fixation with an adjustable graft loop length. This allows progressive tightening af-

ter fixation. Theoretically, this mechanism may provide the ability to adjust the tightness of the graft if the surgeon is concerned with the laxity provided with initial fixation. The surgeon can supplement with specialized aperture fixation that has been developed to place retrograde tibial and femoral screws and, theoretically, improving graft tension because they are advanced in the direction of graft tension.

This technique introduces several unique technical complexities. For instance, owing to the fixed lengths of the sockets, the surgeon must use meticulous technique to avoid graft-construct mismatch, which could lead to "bottoming out" of the graft within the socket and loss of tension. In particular, the authors recommend the use of a specialized graft preparation station with a soft tissue graft wound around tines set at an intraoperatively determined length to avoid graft-construct mismatch. 15 In addition, passing suture, grafts, screws, and so forth through "stab" incisions can traumatize the soft tissues, and thus the use of a cannula, as used in hip and shoulder arthroscopy, is recommended with this technique. 15 Because of the limited incisions, the surgeon also has limited intra-articular access, and the authors who have described this technique note that if complications occur during graft passage, salvage can be complex and may even require an open arthrotomy. 15 Overall, the technical complexity of these technical modifications is high and thus it may not be appropriate for a low volume surgeon. Of note, to date no clinical outcomes have been published regarding the allinside technique, and thus further research will be necessary to determine the clinical utility of this technique.

# ACL Reconstruction in Skeletally Immature Patients

ACL reconstruction techniques used in the skeletally immature patient have continued to evolve. Extra-articular physeal sparing techniques were the mainstay of treatment 10-15 years ago, however, recent literature has shown that drilling across the physis results in a small area of physeal disruption. This minimal physeal disruption likely is clinically insignificant in the majority of patients who sustain an ACL injury. Typically these patients may have few years of growth remaining. ACL tears do occur in the very young age groups, and in these patients an extraphyseal procedure may be indicated, however, there is no Level 1 literature to support this claim. In fact, biomechanical studies have shown that physeal sparing techniques cannot recreate the ACL intact state. Using the ITB as an alterative improves the anteroposterior stability but overconstrains the knee.

Studies evaluating the amount of growth plate destruction have demonstrated that more vertical tunnels produce more cylindrical tunnels and less growth plate involvement by volume. Role However, with the recent trend toward anatomic ACL reconstruction, the surgeon's dilemma is between providing the child the most stable knee or doing the least amount of damage to the physis at the risk of meniscal and chondral damage with recurrent injuries. The advent of new

instrumentation has allowed all-physeal reconstructions that obviate this dilemma, yet introduce their own set of problems owing to extreme graft angles entering the bone that theoretically can lead to graft attenuation and failure. These techniques also yield small bone tunnels and difficulty filling these tunnels with graft using modern fixation techniques. A recent study of anatomic transphyseal drilling demonstrated that volumetrically only 2.4% of the distal femoral physis and 2.5% of the tibial physis were affected by drilling.<sup>85</sup>

Clinical studies have not shown any disruption of growth or malalignment after ACL reconstruction, despite using more modern techniques. Using a periosteum-central third of the patellar tendon-periosteum graft, Bonnard et al<sup>89</sup> found no growth disturbances at an average of 5.5 years in 56 patients with an average skeletal age of 11 years using a transphyseal drilling technique. In 10 different studies using the transphyseal method, only 2 of 310 (0.6%) patients had growth disturbance.89-98 Extraphyseal techniques used in 70 patients across 4 studies 99-102 with only 1 patient suffering a growth disturbance, and 2 studies with a total of 20 patients using the transepiphyseal approach reported no growth disturbances. 89,103,104 With the risk of articular cartilage injury and meniscal damage, much greater in the revision setting, perhaps it is best to assure that pediatric ACL reconstructions are performed in an anatomic method rather than sacrifice stability for sparing of the physis. In fact, in a recent metaanalysis, the number of reruptures was almost double that of growth disturbances. 105

#### **Future Directions**

Several authors have attempted to apply computer-assisted navigation to improve outcomes in ACL reconstruction, either to perfectly replicate footprint placement or to measure laxity intraoperatively. These studies are preliminary and numerous technical, scientific, and logistical challenges exist before these techniques can be applied to general practice. Biological factors may also render these techniques irrelevant, as intraoperative laxity measurements may not accurately reflect laxity in the awake patient owing to neuromuscular control. For instance, Ohkawa et al<sup>106</sup> performed 125 ACL reconstructions using a computer-assisted intraoperative rotational and translational laxity measurement and were unable to find any correlation between intraoperative laxity and postoperative pivot and KT2000 findings, suggesting that intraoperative laxity may not be the main determinant to postoperative stability.

#### **Conclusions**

Significant advances have been made in ACL reconstruction surgical technique. Surgeons must be careful not to embrace technique changes without evidence that these changes represent an improvement on present techniques, given the excellent outcomes with standard contemporary ACL reconstruction. Significant debate exists within the literature regarding the optimal method of tunnel drilling, graft selection, method of fixation, number of bundles reconstructed,

surgical approach, and optimal technique in the skeletally immature patient. Further research will be necessary to determine which of the options within each of these variables provides the best patient outcomes.

#### References

- Lohmander LS, Englund PM, Dahl LL, et al: The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis. Am J Sports Med 35:1756-1769, 2007
- Freedman KB, D'Amato MJ, Nedeff DD, et al: Arthroscopic anterior cruciate ligament reconstruction: A metaanalysis comparing patellar tendon and hamstring tendon autografts. Am J Sports Med 31:2-11, 2003
- McCulloch PC, Lattermann C, Boland AL, et al: An illustrated history of anterior cruciate ligament surgery. J Knee Surg 20:95-104, 2007
- Arnold MP, Kooloos J, van Kampen A: Single-incision technique misses the anatomical femoral anterior cruciate ligament insertion: A cadaver study. Knee Surg Sports Traumatol Arthrosc 9:194-199, 2001
- Chhabra A, Kline AJ, Nilles KM, et al: Tunnel expansion after anterior cruciate ligament reconstruction with autogenous hamstrings: A comparison of the medial portal and transtibial techniques. Arthroscopy 22:1107-1112, 2006
- Giron F, Buzzi R, Aglietti P: Femoral tunnel position in anterior cruciate ligament reconstruction using three techniques. A cadaver study. Arthroscopy 15:750-756, 1999
- Hantes ME, Zachos VC, Liantsis A, et al: Differences in graft orientation using the transtibial and anteromedial portal technique in anterior cruciate ligament reconstruction: A magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc 17:880-886, 2009
- Loh JC, Fukuda Y, Tsuda E, et al: Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. 2002 Richard O'Connor award paper. Arthroscopy 19:297-304, 2003
- Scopp JM, Jasper LE, Belkoff SM, et al: The effect of oblique femoral tunnel placement on rotational constraint of the knee reconstructed using patellar tendon autografts. Arthroscopy 20:294-299, 2004
- Getelman MH, Friedman MJ: Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg 7:189-198, 1999
- Johnson DL, Swenson TM, Irrgang JJ, et al: Revision anterior cruciate ligament surgery: Experience from Pittsburgh. Clin Orthop Relat Res 325:100-109, 1996
- Kohn D, Busche T, Carls J: Drill hole position in endoscopic anterior cruciate ligament reconstruction. Results of an advanced arthroscopy course. Knee Surg Sports Traumatol Arthrosc 6 (suppl 1):S13-S15, 1008
- Marchant BG, Noyes FR, Barber-Westin SD, et al: Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med 38:1987-1996, 2010
- Lubowitz JH: All-inside ACL: Retroconstruction controversies. Sports Med Arthrosc 18:20-26, 2010
- Lubowitz JH, Ahmad CS, Amhad CH, et al: All-inside anterior cruciate ligament graft-link technique: Second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy 27:717-727, 2011
- Alentorn-Geli E, Lajara F, Samitier G, et al: The transtibial versus the anteromedial portal technique in the arthroscopic bone-patellar tendon-bone anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18:1013-1037, 2010
- Alentorn-Geli E, Samitier G, Alvarez P, et al: Anteromedial portal versus transtibial drilling techniques in ACL reconstruction: A blinded cross-sectional study at two- to five-year follow-up. Int Orthop 34:747-754, 2010
- Bedi A, Musahl V, Steuber V, et al: Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: An anatomic and biomechanical evaluation of surgical technique. Arthroscopy 27:380-390, 2011
- Bedi A, Raphael B, Maderazo A, et al: Transtibial versus anteromedial portal drilling for anterior cruciate ligament reconstruction: A cadav-

- eric study of femoral tunnel length and obliquity. Arthroscopy 26:342-350, 2010
- Sim JA, Gadikota HR, Li JS, et al: Biomechanical evaluation of knee joint laxities and graft forces after anterior cruciate ligament reconstruction by anteromedial portal, outside-in, and transtibial techniques. Am J Sports Med 39:2604-2610, 2011
- Steiner M: Anatomic single-bundle ACL reconstruction. Sports Med Arthrosc 17:247-251, 2009
- Hui C, Salmon LJ, Kok A, et al: Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for "isolated" anterior cruciate ligament tear. Am J Sports Med 39:89-98, 2011
- Sajovic M, Strahovnik A, Dernovsek MZ, et al: Quality of life and clinical outcome comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: An 11-year follow-up of a randomized controlled trial. Am J Sports Med 39:2161-2169, 2011
- Brucker PU, Lorenz S, Imhoff AB: Aperture fixation in arthroscopic anterior cruciate ligament double-bundle reconstruction. Arthroscopy 22:e1-e6, 2006
- Feller JA, Webster KE: A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31:564-573, 2003
- Karchin A, Hull ML, Howell SM: Initial tension and anterior loaddisplacement behavior of high-stiffness anterior cruciate ligament graft constructs. J Bone Joint Surg Am 86:1675-1683, 2004
- Kawano CT, de Moraes Barros Fucs PM, Severino NR: Pretensioning of quadruple flexor tendon grafts in two types of femoral fixation: Quasi-randomised controlled pilot study. Int Orthop 35:521-527, 2011
- Karlsson J, Irrgang JJ, van Eck CF, et al: Anatomic single- and doublebundle anterior cruciate ligament reconstruction, part 2: Clinical application of surgical technique. Am J Sports Med 39:2016-2026, 2011
- Kongtharvonskul J, Attia J, Thamakaison S, et al: Clinical outcomes of double- vs single-bundle anterior cruciate ligament reconstruction: A systematic review of randomized control trials. Scand J Med Sci Sports 23:1-14, 2013
- Schreiber VM, van Eck CF, Fu FH: Anatomic double-bundle ACL reconstruction. Sports Med Arthrosc 18:27-32, 2010
- van Eck CF, Schreiber VM, Mejia HA, et al: Andquot; anatomicandquot; anterior cruciate ligament reconstruction: A systematic review of surgical techniques and reporting of surgical data. Arthrosc J Arthroscopic Relat Surg 26(9 suppl):S2-12, 2010
- 32. Meunier A, Odensten M, Good L: Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: A randomized study with a 15-year follow-up. Scand J Med Sci Sports 17:230-237, 2007
- Strand T, Mølster A, Hordvik M, et al: Long-term follow-up after primary repair of the anterior cruciate ligament: Clinical and radiological evaluation 15-23 years postoperatively. Arch Orthop Trauma Surg 125:217-221, 2005
- Taylor DC, Posner M, Curl WW, et al: Isolated tears of the anterior cruciate ligament: Over 30-year follow-up of patients treated with arthrotomy and primary repair. Am J Sports Med 37:65-71, 2009
- Drogset JO, Grøntvedt T, Robak OR, et al: A sixteen-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament. J Bone Joint Surg Am 88:944-952, 2006
- Slocum DB, Larson RL: Rotatory instability of the knee: Its pathogenesis and a clinical test to demonstrate its presence 1968. Clin Orthop Relat Res 454:5-13, 2007
- Marcacci M, Zaffagnini S, Giordano G, et al: Anterior cruciate ligament reconstruction associated with Extra-articular tenodesis: A prospective clinical and radiographic evaluation with 10- to 13-year followup. Am J Sports Med 37:707-714, 2009
- Sommerlath K, Lysholm J, Gillquist J: The long-term course after treatment of acute anterior cruciate ligament ruptures. A 9 to 16 year followup. Am J Sports Med 19:156-162, 1991
- Yamaguchi S, Sasho T, Tsuchiya A, et al: Long term results of anterior cruciate ligament reconstruction with iliotibial tract: 6-, 13-, and 24-

year longitudinal follow-up. Knee Surg Sports Traumatol Arthrosc 14:1094-1100, 2006

- Slocum DB, Larson RL: Pes anserinus transplantation. A surgical procedure for control of rotatory instability of the knee. J Bone Joint Surg Am 50:226-242, 1968
- Losee RE, Johnson TR, Southwick WO: Anterior subluxation of the lateral tibial plateau. A diagnostic test and operative repair. J Bone Joint Surg Am 60:1015-1030, 1978
- Andrews JR, Sanders R: A "mini-reconstruction" technique in treating anterolateral rotatory instability (ALRI). Clin Orthop Relat Res 172: 93-96, 1983
- Butler DL, Noyes FR, Grood ES: Ligamentous restraints to anteriorposterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62:259-270, 1980
- 44. Torg JS, Conrad W, Kalen V: Clinical diagnosis of anterior cruciate ligament instability in the athlete. Am J Sports Med 4:84-93, 1976
- Pernin J, Verdonk P, Si Selmi TA, et al: Long-term follow-up of 24.5 years after intra-articular anterior cruciate ligament reconstruction with lateral extra-articular augmentation. Am J Sports Med 38:1094-1102, 2010
- Clancy WG Jr, Nelson DA, Reider B, et al: Anterior cruciate ligament reconstruction using one-third of the patellar ligament, augmented by extra-articular tendon transfers. J Bone Joint Surg Am 64:352-359, 1982
- Zarins B, Rowe CR: Combined anterior cruciate-ligament reconstruction using semitendinosus tendon and iliotibial tract. J Bone Joint Surg Am 68:160-177, 1986
- 48. Sidles JA, Larson RV, Garbini JL, et al: Ligament length relationships in the moving knee. J Orthop Res 6:593-610, 1988
- 49. Howell SM, Gittins ME, Gottlieb JE, et al: The relationship between the angle of the tibial tunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction. Am J Sports Med 29:567-574, 2001
- Kocher MS, Steadman JR, Briggs KK, et al: Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629-634, 2004
- 51. Lee MC, Seong SC, Lee S, et al: Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Arthroscopy 23:771-778, 2007
- 52. Simmons R, Howell SM, Hull ML: Effect of the angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament on tension of an anterior cruciate ligament graft: An in vitro study. J Bone Joint Surg Am 85:1018-1029, 2003
- Pinczewski LA, Lyman J, Salmon LJ, et al: A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: A controlled, prospective trial. Am J Sports Med 35:564-574, 2007
- Bach BR Jr: Strategies for successful outpatient anterior cruciate ligament reconstruction. Tech Orthop 13:314-317, 1998
- 55. Glenn RE Jr, Bach BR Jr, Bush-Joseph CA: Anterior cruciate ligament reconstruction: The Rush experience. Tech Orthop 20:396, 2005
- Nogalski MP, Bach BR Jr, Bush-Joseph CA, et al: Trends in decreased hospitalization for anterior cruciate ligament surgery: Double-incision versus single-incision reconstruction. Arthroscopy 11:134-138, 1995
- Novak PJ, Bach BR, Hager CA: Clinical and functional outcome of anterior cruciate ligament reconstruction in the recreational athlete over the age of 35. Am J Knee Surg 9:111-116, 1996
- Markolf KL, Park S, Jackson SR, et al: Simulated pivot-shift testing with single and double-bundle anterior cruciate ligament reconstructions. J Bone Joint Surg Am 90:1681-1689, 2008
- O'Donnell JB, Scerpella TA: Endoscopic anterior cruciate ligament reconstruction: Modified technique and radiographic review. Arthrosc J Arthroscopic Relat Surg 11:577-584, 1995
- Bottoni CR, Rooney RC, Harpstrite JK, et al: Ensuring accurate femoral guide pin placement in anterior cruciate ligament reconstruction. Am J Orthop (Belle Mead NJ) 27:764-766, 1998
- 61. Lubowitz JH: Anteromedial portal technique for the anterior cruciate

- ligament femoral socket: Pitfalls and solutions. Arthroscopy 25:95-101, 2009
- Golish SR, Baumfeld JA, Schoderbek RJ, et al: The effect of femoral tunnel starting position on tunnel length in anterior cruciate ligament reconstruction: A cadaveric study. Arthroscopy 23:1187-1192, 2007
- 63. Greis PE, Burks RT, Bachus K, et al: The influence of tendon length and fit on the strength of a tendon-bone tunnel complex. A biomechanical and histologic study in the dog. Am J Sports Med 29:493-497, 2001
- Austin JC, Phornphutkul C, Wojtys EM: Loss of knee extension after anterior cruciate ligament reconstruction: Effects of knee position and graft tensioning. J Bone Joint Surg Am 89:1565-1574, 2007
- Brady MF, Bradley MP, Fleming BC, et al: Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction. Am J Sports Med 35:395-403, 2007
- Cuomo P, Rama KR, Bull AM, et al: The effects of different tensioning strategies on knee laxity and graft tension after double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 35:2083-2090, 2007
- 67. Hoshino Y, Kuroda R, Nagamune K, et al: The effect of graft tensioning in anatomic 2-bundle ACL reconstruction on knee joint kinematics. Knee Surg Sports Traumatol Arthrosc 15:508-514, 2007
- 68. Miura K, Woo SL, Brinkley R, et al: Effects of knee flexion angles for graft fixation on force distribution in double-bundle anterior cruciate ligament grafts. Am J Sports Med 34:577-585, 2006
- 69. Jepsen CF, Lundberg-Jensen AK, Faunoe P: Does the position of the femoral tunnel affect the laxity or clinical outcome of the anterior cruciate ligament-reconstructed knee? A clinical, prospective, randomized, double-blind study. Arthrosc J Arthroscopic Relat Surg 23: 1326-1333, 2007
- 70. Rue JP, Ghodadra N, Bach BR Jr: Femoral tunnel placement in single-bundle anterior cruciate ligament reconstruction: A cadaveric study relating transtibial lateralized femoral tunnel position to the anteromedial and posterolateral bundle femoral origins of the anterior cruciate ligament. Am J Sports Med 36:73-79, 2008
- Rue JP, Ghodadra N, Lewis PB, et al: Femoral and tibial tunnel position using a transtibial drilled anterior cruciate ligament reconstruction technique. J Knee Surg 21:246-249, 2008
- Xu Y, Ao Y, Wang J, et al: Relation of tunnel enlargement and tunnel placement after single-bundle anterior cruciate ligament reconstruction. Arthroscopy 27:923-932, 2011
- 73. Holm I, Oiestad BE, Risberg MA, et al: No difference in knee function or prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament with 4-strand hamstring autograft versus patellar tendon-Bone autograft: A randomized study with 10-year follow-up. Am J Sports Med 38:448-454, 2010
- Boylan D, Greis PE, West JR, et al: Effects of initial graft tension on knee stability after anterior cruciate ligament reconstruction using hamstring tendons: A cadaver study. Arthroscopy 19:700-705, 2003
- Burks RT, Leland R: Determination of graft tension before fixation in anterior cruciate ligament reconstruction. Arthroscopy 4:260-266, 1988
- Strauss EJ, Barker JU, McGill K, et al: Can anatomic femoral tunnel placement be achieved using a transtibial technique for hamstring anterior cruciate ligament reconstruction? Am J Sports Med 39:1263-1269, 2011
- 77. Gabriel MT, Wong EK, Woo SL, et al: Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85-89, 2004
- Koga H, Muneta T, Yagishita K, et al: The effect of graft fixation angles on anteroposterior and rotational knee laxity in double-bundle anterior cruciate ligament reconstruction: Evaluation using computerized navigation. Am J Sports Med 40:615-623, 2012
- Murray PJ, Alexander JW, Gold JE, et al: Anatomic double-bundle anterior cruciate ligament reconstruction: Kinematics and knee flexion Angle–graft tension relation. Arthrosc J Arthroscopic Relat Surg 26:202-213, 2010
- 80. Meredick RB, Vance KJ, Appleby D, et al: Outcome of single-bundle

versus double-bundle reconstruction of the anterior cruciate ligament: A meta-analysis. Am J Sports Med 36:1414-1421, 2008

- Ahn JH, Choi SH, Wang JH, et al: Outcomes and second-look arthroscopic evaluation after double-bundle anterior cruciate ligament reconstruction with use of a single tibial tunnel. J Bone Joint Surg Am 93:1865-1872, 2011
- 82. Núñez M, Sastre S, Núñez E, et al: Health-related quality of life and direct costs in patients with anterior cruciate ligament injury: Single-bundle versus double-bundle reconstruction in a low-demand co-hort-A randomized trial with 2 years of follow-up. Arthroscopy 28: 929-935, 2012
- George MS, Huston LJ, Spindler KP: Endoscopic versus rear-entry ACL reconstruction: A systematic review. Clin Orthop Relat Res 455: 158-161, 2007
- 84. Cerulli G, Zamarra G, Vercillo F, et al: ACL reconstruction with "the original all-inside technique". Knee Surg Sports Traumatol Arthrosc 19:829-831, 2011
- 85. Kercher J, Xerogeanes J, Tannenbaum A, et al: Anterior cruciate ligament reconstruction in the skeletally immature: An anatomical study utilizing 3-dimensional magnetic resonance imaging reconstructions. J Pediatr Orthop 29:124-129, 2009
- 86. Shea KG, Belzer J, Apel PJ, et al: Volumetric injury of the physis during single-bundle anterior cruciate ligament reconstruction in children: A 3-dimensional study using magnetic resonance imaging. Arthroscopy 25:1415-1422, 2009
- 87. Shea KG, Grimm NL, Belzer JS: Volumetric injury of the distal femoral physis during double-bundle ACL reconstruction in children: A three-dimensional study with use of magnetic resonance imaging. J Bone Joint Surg Am 93:1033-1038, 2011
- Kennedy A, Coughlin DG, Metzger MF, et al: Biomechanical evaluation of pediatric anterior cruciate ligament reconstruction techniques. Am J Sports Med 39:964-971, 2011
- 89. Bonnard C, Fournier J, Babusiaux D, et al: Physeal-sparing reconstruction of anterior cruciate ligament tears in children: Results of 57 cases using patellar tendon. J Bone Joint Surg Br 93:542-547, 2011
- Aichroth PM, Patel DV, Zorrilla P: The natural history and treatment of rupture of the anterior cruciate ligament in children and adolescents. A prospective review. J Bone Joint Surg Br 84:38-41, 2002
- Aronowitz ER, Ganley TJ, Goode JR, et al: Anterior cruciate ligament reconstruction in adolescents with open physes. Am J Sports Med 28:168-175, 2000
- 92. Gaulrapp HM, Haus J: Intraarticular stabilization after anterior cruci-

- ate ligament tear in children and adolescents: Results 6 years after surgery. Knee Surg Sports Traumatol Arthrosc 14:417-424, 2006
- 93. Higuchi T, Hara K, Tsuji Y, et al: Transepiphyseal reconstruction of the anterior cruciate ligament in skeletally immature athletes: An MRI evaluation for epiphyseal narrowing. J Pediatr Orthop B 18:330-334, 2009
- Kocher MS, Smith JT, Zoric BJ, et al: Transphyseal anterior cruciate ligament reconstruction in skeletally immature pubescent adolescents. J Bone Joint Surg Am 89:2632-2639, 2007
- Liddle AD, Imbuldeniya AM, Hunt DM: Transphyseal reconstruction of the anterior cruciate ligament in prepubescent children. J Bone Joint Surg Br 90:1317-1322, 2008
- 96. Lipscomb AB, Anderson AF: Tears of the anterior cruciate ligament in adolescents. J Bone Joint Surg Am 68:19-28, 1986
- McCarroll JR, Shelbourne KD, Porter DA, et al: Patellar tendon graft reconstruction for midsubstance anterior cruciate ligament rupture in junior high school athletes. An algorithm for management. Am J Sports Med 22:478-484, 1994
- McIntosh AL, Dahm DL, Stuart MJ: Anterior cruciate ligament reconstruction in the skeletally immature patient. Arthroscopy 22:1325-1330, 2006
- Brief LP: Anterior cruciate ligament reconstruction without drill holes. Arthroscopy 7:350-357, 1991
- Kocher MS, Garg S, Micheli LJ: Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J Bone Joint Surg Am 87:2371-2379, 2005
- Nakhostine M, Bollen SR, Cross MJ: Reconstruction of mid-substance anterior cruciate rupture in adolescents with open physes. J Pediatr Orthop 15:286-287, 1995
- Parker AW, Drez D Jr, Cooper JL: Anterior cruciate ligament injuries in patients with open physes. Am J Sports Med 22:44-47, 1994
- Anderson AF: Transepiphyseal replacement of the anterior cruciate ligament using quadruple hamstring grafts in skeletally immature patients. J Bone Joint Surg Am 86 (suppl 1):201-209, 2004
- Guzzanti V, Falciglia F, Stanitski CL: Physeal-sparing intraarticular anterior cruciate ligament reconstruction in preadolescents. Am J Sports Med 31:949-953, 2003
- Frosch KH, Stengel D, Brodhun T, et al: Outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy 26:1539-1550, 2010
- 106. Ohkawa S, Adachi N, Deie M, et al: The relationship of anterior and rotatory laxity between surgical navigation and clinical outcome after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:778-784, 2012